Ходовая часть автомобиля
Диагностику и ремонт ходовой части автомобиля необходимо периодически проводить каждому автомобилю.
Проводить диагностику подвески рекомендуется каждый раз после 10-15 тысяч км пробега, а в случае эксплуатации машины по бездорожью и то чаще. Принимая во внимание наши «хорошие» дороги, ремонт ходовой части автомобилей приходится делать чаще, чем менять масло.
Любой владелец автомобиля понимает, что от состояния ходовой части автомобиля зависит безопасность на дороге и только бережное отношение, своевременная диагностика и ремонт ходовой части автомобиля помогут увеличить ее работоспособность и уверенность водителя на дороге.
Во время диагностики ходовой части делается визуальный и инструментальный осмотр:
- Шаровых;
- Сайлентблоков;
- Шрусов;
- Рулевых наконечников;
- Амортизаторов;
- тоек;
- Пружин амортизаторов;
- Развал-схождение;
- Ступичных подшипников;
Ремонт ходовой
Замена шаровых и сайлентблоков — это регулярная процедура, которая производится на каждом автомобиле. Периодичность замены зависит от стиля езды и надёжности ипрчности узла. При износе сайлентблока слышны отчетливые металлические звоны в подвеске при проезде неровностей.
Шрус используется для передачи крутящего момента. Его замена делается в тех случаях, когда при повороте руля слышен хруст. При этом легко определить какой шрус подлежит замене, достаточно повернуть в лево – слышен хруст, значит необходима замена или ремонт и наоборот.
При замене тормозных колодок как правило меняются колодки на оси.
Исправная ходовая часть автомобиля — это комфорт и безопасность на дороге. Ведь она является сложной системой, задачей которой является равномерное распределение нагрузок на опорные детали автомобиля.
Ходовая часть автомобиля может быть жесткой и мягкой. Чем жестче, тем менее комфортен авто, но тем лучше управляемость. Для сбалансированности машины устанавливаются амортизаторы одного типа.
Как уже было сказано, подвеска машины играет очень важную роль в управлении машиной, поэтому не вовремя сделанный ремонт ходовой части автомобиля может привести к нежелательным последствиям.
Например, если вовремя не выполнять ремонт, то это может привести к последсвиям, а при крутом повороте на высокой скорости и вообще можно перевернуться. Так из-за таких мелких неисправностей необходимо будет делать более существенный ремонт автомобиля.
Определить неисправность можно по следующим признакам: машину начинает уводить в сторону, на поворотах машина раскачивается, при движении образуется вибрация, различные стуки, неравномерный износ шин.
В ремонт ходовой части автомобиля включается восстановление передней и задней подвески. Проверка качества выполненных ремонтных работ проводится по специализированной методике с использованием электронного развал — схождения по замкнутому кругу.
Основной неисправностью амортизатора является изменение его характеристики, приводящее к ухудшению гашения колебаний. Наиболее частые причины — нарушение герметичности (течь масла), износ или механические повреждения элементов конструкции амортизатора (разрушение клапанов, отворачивание поршня, коррозия штока и т.д.).
При неисправных амортизаторах ухудшается сцепление колес с поверхностью дороги, и автомобиль начинает хуже слушаться руля, отклоняется от заданной траектории движения. Например, при движении на повороте по неровной дороге автомобиль самопроизвольно смещается «наружу», распрямляя траекторию. Увеличиваются крены кузова при прохождении поворотов и интенсивном торможении. При проезде значительных неровностей даже на небольшой скорости возможны пробои подвески (полностью выбирается ход подвески, при этом амортизатор не успевает погасить колебание колеса) сопровождаемые сильным ударом в области колеса, с неисправным амортизатором. Автомобиль, колесо которого вывешено в воздухе, не может тормозить, разгоняться или поворачивать, т.е. становится неуправляемым.
Представьте картину: пружины стремятся вернуть колесо на землю, но ударившись о покрытие, оно так же быстро отскакивает назад. Колебания повторяются. Колесо автомобиля встречает новые препятствия и ямы, кузов автомобиля раскачивается все сильнее и сильнее. Если бы не амортизаторы, то при скоростях больше 20-30 км/час управлять таким автомобилем становится практически невозможно. Характеристики же исправного амортизатора рассчитаны так, что колесо делает только одно «полноценное» движение вверх, возвращается вниз и после этого 80% энергии удара погашено амортизатором — превращено в тепло и рассеяно в воздухе. Исправные амортизаторы являются ведущим элементом активной безопасности. Опасность ситуации заключается в том, что, во-первых, водители этого не осознают, а, во-вторых, износ амортизаторов происходит постепенно, часто без видимых или слышимых признаков. Водитель привыкает к «новому» поведению автомобиля, но в тот момент, когда нужно будет перестроиться и уйти от неожиданно появившегося встречного автомобиля или поворот окажется круче на выходе, чем он выглядел при входе в него… Виноваты будут не амортизаторы, а водитель, не справившийся с управлением. Чем неисправнее амортизаторы, тем больше времени колесо проводит в воздухе, а не в контакте с дорогой. В результате увеличивается тормозной путь, особенно нагруженного автомобиля и с прицепом, снижается скорость безопасного прохождения поворотов и порог начала аквапланирования, происходит интенсивный износ шин, узлов ходовой части, ухудшается освещение дороги и происходит ослепление встречных водителей.
Кроме того, неисправные амортизаторы ускоряют износ многих деталей и узлов ходовой части:
-
подшипников ступиц,
-
шин (характерный «пятнистый» износ),
-
пружин или рессор,
-
опор стоек подвески,
-
резинометаллических шарниров (сайлент-блоков),
-
шаровых шарниров, узлов рулевого управления,
-
шарниров равных угловых скоростей (ШРУСов).
Существует несколько методов определения состояния амортизаторов:
-
визуальный осмотр и подсчет колебаний кузова автомобиля
-
снятие характеристик работы амортизатора
(самый точный метод проверки исправности амортизатора, но самый дорогой);
-
методы измерения по колебаниям кузова
(самый быстрый, но недостаточно объективный метод проверки амортизаторов);
-
методы измерения по колебаниям колес
Два последних метода заключаются в диагностировании не самих амортизаторов, а работы подвески в целом. При этом на результаты испытаний в о пределенной степени влияет состояние шарниров, пружин, стабилизаторов, давление в шинах и пр.
Визуальный осмотр
Является самым простым способом диагностики, не требующим специального оборудования. Он позволяет выявить только внешние повреждения амортизатора — коррозию, задиры, деформацию корпуса или штока, негерметичность уплотнений, приводящую к подтекам амортизаторной жидкости. Изменение характеристик, например, из-за износа клапанов, визуально определить невозможно.
Подсчет количества колебаний
Является простейшим и доступным, но наименее точным способом определения работоспособности амортизаторов. При исправных амортизаторах после интенсивной раскачки и толчка автомобиля вниз кузов должен подняться, опуститься и при последующем подъеме остановиться. То есть колебания должны прекратиться за полтора периода. Полностью неисправные амортизаторы позволят кузову совершить более двх-трех полных колебаний вверх-вниз. Если неисправен только один из них, колебания кузова будут частично гаситься другими, что практически невозможно оценить на глаз. Данный способ скорее применим для определения,: установлены или нет на вашем автомобиле амортизаторы. А, может, вам их забыли поставить?.. О ценка работоспособности амортизаторов проводится при помощи специальных приборов и стендов.
Снятие характеристик работы амортизатора
Рисунок 2.1 — Стенд для определения характеристики амортизатора
Амортизатор устанавливают на специальный стенд (рис.2.1).
Измеряя усилия сжатия и отбоя на разных режимах, получают характеристику, а затем сравнивают ее с номинальной. Этот способ позволяет наиболее достоверно оценить работоспособность амортизатора, поэтому используется производителями для испытаний и контроля качества своей продукции, а также при сертификации.
Методы измерения по колебаниям кузова
Амплитудный метод
Рисунок 2.2 — Амплитудный метод диагностики
Этот метод заключается в измерении затухания колебаний кузова после его раскачивания. Оценка работоспособности подвески автомобиля происходит при малых ходах и на низких скоростях. В большинстве случаев позволяет достоверно установить лишь полную потерю работоспособности амортизатора: если шток перемещается практически без сопротивления либо амортизатор заклинило, а также разницу состояний амортизаторов одной оси. Диагностирование работоспособности амортизаторов осуществляется с использованием прибора, снабжен- ного датчиком перемещения. Прибор состоит из блока регистрации, в котором размещены ультразвуковой датчик, вычислительное устройство, управляющие клавиши, дисплей, а также источник ультразвука. Блок закрепляется на крыле автомобиля с помощью присосок, а источник кладется на пол рядом с колесом (рис. 2.2).
В память устройства предварительно введены опорные данные. Базы опорных данных поставляются в комплекте диагностического оборудования, а также могут пополняются результатами измерений, полученных на аналогичном автомобиле с заведомо исправными амортизаторами.
Автомобиль с закрепленным на крыле блоком однократно толкают вниз. Прибор регистрирует колебания и вычисляет коэффициент — число, характеризующее затухание колебаний. Чем быстрее затухают колебания, тем больше значение коэффициента.
Видео (кликните для воспроизведения). |
Если его значение лежит в пределах:
-
от 100 до 75% — затухание колебаний достаточное;
-
от 75 до 51% — затухание умеренное;
-
от 50 до 0% — затухание недостаточное.
Шок-тест (shock-test)
Рисунок 3.3 — Шок тест
Испытания проводятся на стенде, состоящем из небольшого пневматического подъемника и устройства с подпружиненными рычагами, отслеживающего верти-кальные перемещения кузова (фото 3).
Автомобиль устанавливают на платформу передними или задними колесами. Рычаги устройства зацепляют снизу за колесные арки. Колеса испытуемой оси приподнимают на высоту 10 см, а затем резко отпускают, вызывая колебания кузова, а вместе с ним и рычагов. По результатам теста компьютер стенда вычисляет коэффициент затухания колебаний для каждого амортизатора испытуемой оси. Если значение коэффициента составляет:
— от 22 до 65 — гашение колебаний достаточное;
— от 16 до 22 — гашение умеренное;
— от 0 до 16 — гашение недостаточное.
Предельно допустимая относительная разность между коэффициентами для амортизаторов одной оси составляет 22%.
Ее значение определяется следующим образом: например, если для одного амортизатора коэффициент равен 60, а для второго — 45, то их относительная разность равна (60-45)/60=0,25 или 25%.
Торможение с «клевком»
Рисунок 2.4 — Стенд площадочного типа для диагностики подвески
Данный метод применяется, как правило, при экспресс-диагностике. Линия экспресс-диагностики устанавливается в зоне приемки станции технического обслуживания и осуществляет общую поверхностную диагностику ходовой части. Помимо испытаний амортизаторов проверяет эффективность работы тормозных систем и боковой увод автомобиля при отпущенном рулевом колесе. Стенд (рис.2.4) состоит из вмонтированных в пол платформ с датчиками, вычислительного устройства и монитора. Для проведения измерений автомобиль плавно заезжает на платформы и резко затормаживается.
При этом кузов начинает колебаться. Датчики фиксируют изменение нагрузки на платформы. По количеству и интенсивности колебаний вычислительное устройство оценивает эффективность работы амортизаторов. Точность измерения этим способом невелика и зависит от многих факторов, не связанных с реальным техническим состоянием подвески автомобиля (мокрые или ошипованные шины, неэффективно работающая тормозная система, непрогретые амортизаторы и т.д.).
Метод измерения по колебаниям колес
Такой метод точнее моделирует реальные условия работы амортизаторов и позволяет детальнее определить степень их износа. Он реализуется в линиях экспресс-диагностики двумя способами: измерения амплитуды методом BOGE / MAXA и измерения сцепления с дорогой методом EUSAMA European Association Of Shock Absorber Manufacturer — Европейская ассоциация производителей (амортизаторов). В обоих случаях автомобиль устанавливается на специальные платформы, которым по очереди сообщаются вертикальные колебания колес.
Измерения амплитуды методом BOGE/MAXA
Рисунок 2.5 — Стенд для диагностики подвески методом BOGE/MAXA
Заключается в измерении веса колеса и амплитуды колебаний платформы с установленным на нее колесом автомобиля (рис.2.5). Платформе задаются колебания с частотой 16 Гц. По мере их затухания наступает резонанс (возрастание амплитуды колебаний при совпадении собственной частоты подвески автомобиля и частоты колебаний платформы). Чем больших значений достигает амплитуда, т.е чем выше всплеск волны на графике в зоне резонанса, тем хуже амортизатор гасит колебания. Даже не сравнивая результаты измерений с базовыми данными, по графику можно оценить эффективность работы амортизатора.
Для наглядности компьютер стенда пересчитывает полученные значения амплитуд в процентный коэффициент эффективности амортизатора.
Если этот показатель:
— более 60% — работа амортизатора нормальная;
— 60 до 40% — амортизатор слабо гасит колебания;
— менее 40% — состояние амортизатора неудовлетворительное.
На практике разность коэффициентов (не путать с разностью амплитуд) для колес одной оси более 10% свидетельствует о неисправности амортизатора с меньшим коэффициентом.
Измерения сцепления с дорогой методом EUSAMA
Рисунок 2.5 — Стенд для диагностики подвески методом EUSAMA
Оценивается способность подвески удерживать контакт колеса с неровной дорогой. Стенд (рис. 2.6) отслеживает силу, с которой колесо автомобиля воздействует на платформу. Измерения производятся сначала на неподвижной платформе, а затем в процессе затухающих колебаний, начиная с частоты 25 Гц. По результатам измерений компьютер вычисляет «коэффициент сцепления» колеса с опорной поверхностью, выраженный в процентах. Он равен отношению минимальной нагрузки во время колебаний к нагрузке на неподвижную платформу.
При коэффициенте:
— более или равным 45% — подвеска обеспечивает достаточное сцепление;
— менее 45, но более 25% — слабое сцепление;
— меньше 25% — недостаточное сцепление.
Предельно допустимая относительная разность коэффициентов для колес одной оси составляет 0,15.
Результаты проверки амортизаторов с использованием приборов и стендов выдаются на дисплей и в виде распечатки на лист бумаги. В них могут присутствовать: графики колебаний, весовая нагрузка каждого колеса и осей автомобиля, значения вычисленных коэффициентов для каждого амортизатора, разность коэффициентов для колес одной оси и т. п. Образцы распечаток с расшифровкой условных обозначений представлены на рис. 2.6-2.10.
Рисунок 2.6 — Результат проверки амортизатора на дисплеи стенда СИА-04.
Рисунок 2.7 — Результаты измерений по колебаниям кузова, зарегистрированные прибором M-Tronic «Bosh»
Рисунок 2.8 — Результаты измерений по колебаниям кузова, зарегистрированные шок-тестером.
Рисунок 2.9 — Распечатка с результатами измерений работы подвески на стенде (амплитудно-резонансный метод).
Рисунок 2.10 — Распечатка с результатами измерений работы подвески на стенде ( метод EUSAMA). 1 — значение «процентных коэффициентов сцепления»; 2 — относительная разность коээфициентов для колес передней оси; 3 — относительная разность коэффициентов для колес задней оси; 4 — наглядные шкалы состояния амортизаторов
Видео (кликните для воспроизведения). |
Здравствуйте! Представляюсь на нашем сайте. Я Василий Логов. Я уже более 8 лет работаю автомехаником. Я считаю, что являюсь специалистом в этом направлении, хочу подсказать всем посетителям сайта как решать сложные и не очень задачи.
Все материалы для сайта собраны и тщательно переработаны для того чтобы донести как можно доступнее всю необходимую информацию. Перед применением описанного на сайте всегда необходима ОБЯЗАТЕЛЬНАЯ консультация с профессионалами.